3.75 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))}{x^4} \, dx\)

Optimal. Leaf size=203 \[ \frac {c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{3 x^3}-\frac {c^3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c d \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {4 b c^3 d \log (x) \sqrt {d-c^2 d x^2}}{3 \sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^3+c^2*d*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x-1/6*b*c*d*(-c
^2*d*x^2+d)^(1/2)/x^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/2*c^3*d*(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/(c*x-1
)^(1/2)/(c*x+1)^(1/2)-4/3*b*c^3*d*ln(x)*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.63, antiderivative size = 215, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5798, 5740, 5738, 29, 5676, 14} \[ -\frac {c^3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt {c x-1} \sqrt {c x+1}}+\frac {c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {d (1-c x) (c x+1) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 x^3}-\frac {b c d \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {4 b c^3 d \log (x) \sqrt {d-c^2 d x^2}}{3 \sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^4,x]

[Out]

-(b*c*d*Sqrt[d - c^2*d*x^2])/(6*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[
c*x]))/x - (d*(1 - c*x)*(1 + c*x)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(3*x^3) - (c^3*d*Sqrt[d - c^2*d*x^
2]*(a + b*ArcCosh[c*x])^2)/(2*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (4*b*c^3*d*Sqrt[d - c^2*d*x^2]*Log[x])/(3*Sqrt
[-1 + c*x]*Sqrt[1 + c*x])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5738

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x
] + (-Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)
*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Dist[(c^2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f^2*(m + 1)*Sqrt[1 + c*x]*
Sqrt[-1 + c*x]), Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]) /; FreeQ[{
a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[m, -1]

Rule 5740

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x]
+ (-Dist[(2*e1*e2*p)/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Dist[(b*c*n*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sq
rt[-1 + c*x]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
&& IntegerQ[p - 1/2]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^4} \, dx &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {(-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^4} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 x^3}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \frac {-1+c^2 x^2}{x^3} \, dx}{3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (c^2 d \sqrt {d-c^2 d x^2}\right ) \int \frac {\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x^2} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 x^3}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (-\frac {1}{x^3}+\frac {c^2}{x}\right ) \, dx}{3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (b c^3 d \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{x} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (c^4 d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 x^3}-\frac {c^3 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt {-1+c x} \sqrt {1+c x}}-\frac {4 b c^3 d \sqrt {d-c^2 d x^2} \log (x)}{3 \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.84, size = 259, normalized size = 1.28 \[ \frac {d^2 \left (-2 a \sqrt {\frac {c x-1}{c x+1}} \left (4 c^4 x^4-5 c^2 x^2+1\right )+8 b c^3 x^3 (c x-1) \log (c x)+b c x (c x-1)\right )-6 a c^3 d^{3/2} x^3 \sqrt {\frac {c x-1}{c x+1}} \sqrt {d-c^2 d x^2} \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )+3 b c^3 d^2 x^3 (c x-1) \cosh ^{-1}(c x)^2-2 b d^2 \sqrt {\frac {c x-1}{c x+1}} \left (4 c^4 x^4-5 c^2 x^2+1\right ) \cosh ^{-1}(c x)}{6 x^3 \sqrt {\frac {c x-1}{c x+1}} \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^4,x]

[Out]

(-2*b*d^2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 - 5*c^2*x^2 + 4*c^4*x^4)*ArcCosh[c*x] + 3*b*c^3*d^2*x^3*(-1 + c*x)*Arc
Cosh[c*x]^2 - 6*a*c^3*d^(3/2)*x^3*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^
2])/(Sqrt[d]*(-1 + c^2*x^2))] + d^2*(b*c*x*(-1 + c*x) - 2*a*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 - 5*c^2*x^2 + 4*c^4*
x^4) + 8*b*c^3*x^3*(-1 + c*x)*Log[c*x]))/(6*x^3*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a c^{2} d x^{2} - a d + {\left (b c^{2} d x^{2} - b d\right )} \operatorname {arcosh}\left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^4,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arccosh(c*x))*sqrt(-c^2*d*x^2 + d)/x^4, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^4,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.74, size = 1181, normalized size = 5.82 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^4,x)

[Out]

-1/3*a/d/x^3*(-c^2*d*x^2+d)^(5/2)+2/3*a*c^2/d/x*(-c^2*d*x^2+d)^(5/2)+2/3*a*c^4*x*(-c^2*d*x^2+d)^(3/2)+a*c^4*d*
x*(-c^2*d*x^2+d)^(1/2)+a*c^4*d^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/2*b*(-d*(c^2*x^2
-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)^2*d*c^3+8/3*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)
^(1/2)*arccosh(c*x)*d*c^3-32*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x^4/(c*x+1)^(1/2)/(c*x-1)^(1/
2)*arccosh(c*x)*c^7+32*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x^5/(c*x+1)/(c*x-1)*arccosh(c*x)*c^
8-8/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x^3*c^6+8/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9
*c^2*x^2+1)*x^5/(c*x+1)/(c*x-1)*c^8+12*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x^2/(c*x+1)^(1/2)/(
c*x-1)^(1/2)*arccosh(c*x)*c^5-52*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x^3/(c*x+1)/(c*x-1)*arcco
sh(c*x)*c^6+2/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x*c^4-4*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4
*x^4-9*c^2*x^2+1)*x^2/(c*x+1)^(1/2)/(c*x-1)^(1/2)*c^5-10/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)
*x^3/(c*x+1)/(c*x-1)*c^6-4/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)/(c*x+1)^(1/2)/(c*x-1)^(1/2)*a
rccosh(c*x)*c^3+73/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x/(c*x+1)/(c*x-1)*arccosh(c*x)*c^4+3/
2*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)/(c*x+1)^(1/2)/(c*x-1)^(1/2)*c^3+2/3*b*(-d*(c^2*x^2-1))^(
1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)*x/(c*x+1)/(c*x-1)*c^4-14/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)
/x/(c*x+1)/(c*x-1)*arccosh(c*x)*c^2-1/6*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)/x^2/(c*x+1)^(1/2)/
(c*x-1)^(1/2)*c+1/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(24*c^4*x^4-9*c^2*x^2+1)/x^3/(c*x+1)/(c*x-1)*arccosh(c*x)-4/3*b
*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*d*c^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{3} \, {\left (3 \, \sqrt {-c^{2} d x^{2} + d} c^{4} d x + 3 \, c^{3} d^{\frac {3}{2}} \arcsin \left (c x\right ) + \frac {2 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} c^{2}}{x} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}{d x^{3}}\right )} a + b \int \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^4,x, algorithm="maxima")

[Out]

1/3*(3*sqrt(-c^2*d*x^2 + d)*c^4*d*x + 3*c^3*d^(3/2)*arcsin(c*x) + 2*(-c^2*d*x^2 + d)^(3/2)*c^2/x - (-c^2*d*x^2
 + d)^(5/2)/(d*x^3))*a + b*integrate((-c^2*d*x^2 + d)^(3/2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/x^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^4,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))/x**4,x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*acosh(c*x))/x**4, x)

________________________________________________________________________________________